Total Synthesis of (-)-Oudemansin X Based on Enzymatic Resolution Using Immobilized Lipase

Hiroyuki Akita*, Isao Umezawa, Masako Nozawa and Shinji Nagumo

School of Pharmaceutical Science, **Toho University, 2-2-I Miyama, Funabashi, Chiba, 274, Japan**

(Received 2 February 1993; accepted 23 March 1993)

Abstract: (-)-Oudemansin X **(1)** was synthesized based on enzymatic resolution of (f)-diol5 **using immobilized lipase**

Oudemansin X **(l), an** antibiotic isolated from mycelial cultures of *Oudemansiella radicata* exhibits strong antifungal activitiesl). The total synthesis of **(-)-1** has already been achieved from an optically active cyclitol, L quebrachitol²⁾. In the previously reported chiral syntheses of oudemansin A^{3} and B^{4}) similar to oudemansin X (1), synthetic chiral intermediates were obtained by the microbiological asymmetric reduction of the α -methyl- β keto ester or cl-chloroacetoacetate. We now report that 1 was synthesized in optically active form **(-)-1** based on enzymatic resolution using immobilized lipase m organic solvent.

The most intriguing point of the present synthesis is the preparation of the optically active diol 5. This was successfully achieved by carring out an enantioselective monoacetylation of (\pm) -diol 5 using immobilized lipase. Reformatsky reaction of p-methoxy-cinnamaldehyde and methyl α -bromopropanoate gave (\pm)-2⁵⁾ (50%) and (\pm)-3⁸) (42%). Oxidation of (\pm)-3 with DDQ provided (\pm)- β -keto ester 4 (72%), which was reduced with $Zn(BH_d)$ to give the (\pm) -syn-2 (14%) along with a small amount of the (\pm) -anti-3 (2%)⁶). As $Zn(BH₄)$ ₂ reduction of α -methyl- β -keto ester was reported to give predominantly the syn- α -methyl- β -hydroxy ester⁷⁾, the relative structure of the present (\pm)-2 was assigned the syn-structure. Reduction of (\pm)-2 with LiBH₄ provided (\pm)-syn diol 5 in 96% yield. Initially, (\pm)-5 was subjected to screening experiments using seven kinds of commercially available lipases. Among them, lipase "Amano P" from *Pseudomonas* sp. was found to give the $(9R, 10R)$ -mono acetate 6 $(68\%, 43\%$ ee) and the unchanged $(9S, 10S)$ -diol 5 $(31\%, 92\%$ ee) in the presence of isopropenyl acetate as an acyl donor in isopropyl ether as shown in table (entry 7). Then immobilized lipase "Amano P" was obtained by illumination of a mixture consisting of a photo-crosslinkable resin prepolymer ENTP-40009), a photo-sensitizer **such** as benzoin ethyl ether and the crude lipase "Amano P". When (\pm) -5 was subjected to the enantioselective acetylation using immobilized lipase for long time (16hr, entry 8), 97%ee of (9s. lOS)-5 was obtained in 27% **yield,** while short time (2-3hr, entry 9. 10) incubation gave 93-94%ee of (9R, lOR)-6 in 23% yield. The recovered (9S, lOS)-5 having 27% enantiomeric excess was again subjected to the enzymatic reaction using the recovered immobilized lipase (entry 11) for 24hr to give (9S,

a; CH₃CHBrCOOMe/Zn/PhH, reflux b; DDQ/THF, 0°C c; Zn(BH4)2/Et2O, 0°C d; LIBH4/THF, 0°C e; isopropenyl acetate/lipase f; 1) ^tBuMe₂SICI/imidazole/DMF 2) Mel/KH/THF 3) Bu₄N*F'/THF g; 1) CBr₄/Ph₃P 2) NaCN/DMSO h; 1) OH 2) H⁺ 3) CH₂N₂ i; 1) HCOOMe/LDA/THF, -78'C~0'C 2) OH 3) H⁺ 4) CH₂N₂/MeOH

*) Optically active (9S,lOS)-5 (27%ee) was employed

lOS)-5 (49% yield, 88%ee) and (9R, lOR)-6 (44% yield, 41%ee). On one recrystallization of (9S, lOS)-5 (88%ee), optically pure (>99%ee) (9S, 10S)-5 ($\alpha|_{\text{D}}$ +17.6, c=1.00, CHCl3) was obtained. Optical purity of enzymatic reaction products was determined by HPLC on a CHIRALCEL OD (250 X 4.6 mm) column. In order to confirm the absolute structure of the present $(+)$ -5, $(+)$ -5 was successfully converted to the reported compound $(10S) - 82,10$. Monosilylation of $(+)$ -5 followed by methylation gave the 9-methoxy silyl ether which was treated with fluoride ion to give the 9-methoxy alcohol (+)-7 (α)_D +43.2, c=1.00, CHCl₃) in 96% yield in three steps. Bromination of $(+)$ -7 followed by treatment of NaCN gave the 9-methoxy nitrile $(-)$ -8 $({\alpha}]_D$ -35.4, c=1.00, CHCl₃) in 91% overall yield, whose spectral data were identical with those (${\alpha}]_D$ -34.5, $c=0.30$, CHC13) of the reported (10S)-8. Thus the absolute structure of $(+)$ -5 was determined to be 9S, 10S and that of mono acetate 6 was confirmed to be 9R, 10R. Conversion of (10S)-methyl ester 9 was achieved by the standard procedure (three steps) in overall 83% yield. Formylation of (lOS)-9 with LDA and methyl formate in THF at -78°C to 0°C, followed by treatment with $CH₂N₂$ -MeOH produced the optically active oudemansin X (1) (23% overall yield, $[\alpha]_{D}$ -20 (c=1.0, EtOH)) after purification by HPLC. The spectral data (IR, NMR, and $[\alpha]_D$) of the synthetic (-)-1 was identical with those ($[\alpha]_D$ -20 (c=0.16, EtOH)) of synthetic natural oudemansin $X(1)^2$.

Acknowledgement: The author are grateful to Professor S. Ogawa, Keio University, Japan for generously providing the spectral data of synthetic $(-)$ -oudemansin $X(1)$ and synthetic intermediate $(10S)$ -8. This work was supported by a grant for the Riodesign Research Program from The Institute of Physical and Chemical Research (RIKEN) to H. A.

References and Notes

- 1) T. Anke, A. Werle, M. Brass, and W. Steglich, J. *Antibiot.,* 43, 1010 (1990).
- 2) N. Chida, K. Yamada, and S. Ogawa, *Chem. Lett.*, 1992, 687.
- 3) a) H. Akita, H. Koshiji, A. Furuichi, K. Horikoshi, and T. Oishi, *Tetrahedron Lett.*, 24, 2009 (1983); b) H. Akita, H. Koshiji, A. Furuichi, K. Horikoshi, and T. Oishi, Chem. Pharm. Bull., 32, 1242 (1984).
- 4) a) H. Akita, H. Matsukura, and T. Oishi, *Tetrahedron Lert.,* 27,5397 (1986): b) H. Akita, H. Matsukura, H. Karashima, and T. Oishi, *Chem. Pharm. Buff., 40, 2847 (1992).*
- *5)* Satisfactory analytical data were obtained for all new compounds.
- 6) Reaction are not optimized yet. Depending upon the stability of reduction product, much higher yield is expected by changing workup and reaction conditions.
- 7) T. Nakata and T. Oishi, *Tetrahedron Lett.,* **21,** 1641 (1980).
- 8) The (\pm) -anti isomer 3 was successfully converted into the (\pm) -syn diol 5.

a; LiBH_a/THF, 0° C b; DDQ/THF, 0° C c; Zn(BH_a)₂/Et₂O, 0° C d; 1) $Me₂C(OMe)₂/CSA/PhH, R.T. 2) separation$ e; PPTS/MeOH, R.T.

9) S. Fukui and A. Tanaka, *Advances in Biochemical Engineering/Biotechnology*, 29, 1 (1984). 10) Private communication from Prof. S. Ogawa.