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Abstract: (-)-Oudemansin X (1) was synthesized based on enzymatic resolution of (f)-diol5 using immobilized lipase 

Oudemansin X (l), an antibiotic isolated from mycelial cultures of Oudemansiella radicata exhibits strong 

antifungal activitiesl). The total synthesis of (-)-1 has already been achieved from an optically active cyclitol, L 

quebrachitol2). In the previously reported chiral syntheses of oudemansin A3) and B4) similar to oudemansin X 

(l), synthetic chiral intermediates were obtained by the microbiological asymmetric reduction of the a-methyl-P- 

keto ester or cl-chloroacetoacetate. We now report that 1 was synthesized in optically active form (-)-1 based 

on enzymatic resolution using immobilized lipase m organic solvent. 

The most intriguing point of the present synthesis is the preparation of the optically active diol5. This 

was successfully achieved by caning out an enantioselective monoacetylation of (+)-diol5 using immobilized 

lipase. Reformatsky reaction of p-methoxy-cinnamaldehyde and methyl a-bromopropanoate gave (*)-25) 

(50%) and (k)-3s) (42%). Oxidation of (+)-3 with DDQ provided (*)-p-keto ester 4 (72%), which was 

reduced with Zn(BH& to give the (f)-syn-2 (14%) along with a small amount of the (*)-anti-3 (2%)@. As 

Zn(BH& reduction of cl-methyl-a-keto ester was reported to give predominantly the syn-a-methyl-P-hydroxy 

ester7), the relative structure of the present (+)-2 was assigned the syn-structure. Reduction of (+)-2 with 

LiBH4 provided (+)-syn diol5 in 96% yield. Initially, (f)-5 was subjected to screening experiments using 

seven kinds of commercially available lipases. Among them, lipase “Amano P” from Pseudomonas sp. was 

found to give the (9R, lOR)-mono acetate 6 (68%, 438ee) and the unchanged (9S, lOS)-diol 5 (31%, 92%ee) 

in the presence of isopropenyl acetate as an acyl donor in isopropyl ether as shown in table (entry 7). Then 

immobilized lipase “Amano P” was obtained by illumination of a mixture consisting of a photo-crosslinkable 

resin prepolymer ENTP-40009), a photo-sensitizer such as benzoin ethyl ether and the crude lipase “Amano P”. 

When (f)-5 was subjected to the enantioselective acetylation using immobilized lipase for long time (16hr, entry 

8), 97%ee of (9s. lOS)-5 was obtained in 27% yield, while short time (2-3hr, entry 9. 10) incubation gave 

93-94%ee of (9R, lOR)-6 in 23% yield. The recovered (9S, lOS)-5 having 27% enantiomeric excess was 

again subjected to the enzymatic reaction using the recovered immobilized lipase (entry 11) for 24hr to give (9S, 
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Table 

OH OH 

(&)-5 (9S,lOS)-5 (9R,lOR)-6 

Entry Substrate 

(mg) 

Lipase Time 
(hr) 

Product 
(9S,lOS)-5 (9R,lOR)-6 
% Wee) % (%ee) 

1 100 Nagase P (Pseudomonas sp.) 72 57 (14) 35 (44) 
2 100 B-4 (Rhizopus japunicus) 72 50 (29) 43 (49) 
3 100 My-30 (Car&&z ~ii~ucea) 8 39 f34) 27 (25) 
4 100 PL-266 (Alcaligeaes sp.) 8 30 (88) 42 (51 
5 100 AL (Achromobactor sp.) 8 54 (24) 41 (37) 
6 100 Amano AY-30 (Candida rugosa) 9 57 (5) 14 (37) 
7 100 Amano P (Pseudomonas sp.) 6 31 (92) 68 (43) 
8 100 Immobilized lipsse (Amano P) 16 27 (97) 66 (42) 
9 100 Immobilized lipase (Amano P) 2 70 (23) 23 (94) 

10 200 I~obili~d lipase (Amano P) 3 74 (27) 23 (93) 
11* 300 Immobilized lipase (Amano P) 24 49 (88) 44 (41) 

*) Optically active (9S,lOS)-5 (27%ee) was employed 

lOS)-5 (49% yield, 88%ee) and (9R, lOR)-6 (44% yield, 41%ee). On one recrystallization of (9S, lOS)-5 

@S%ee), opticafly pure (>99%ee) (9S, lOS)-5 ([a]~ +17.6, c=l.W, CHCl3) was obtained. Optical purity of 

enzymatic reaction products was determined by HPLC on a CHIRALCEL OD (250 X 4.6 mm) column. In 

order to confirm the absolute structure of the present (+)-5, (+)-5 was successfully converted to tbe reported 

compound (lOS)-82110). Monosilylation of (+)-5 followed by methylation gave the 9-methoxy silyl ether 

which was treated with fluoride ion to give the 9-methoxy alcohol (+)-7 ((a]~ +43.2, c=l.OO, CHC13) in 96% 

yield in three steps. Bromination of (+)-7 followed by treatment of NaCN gave the 9-methoxy nitrite (-)-8 

([cr]~ -35.4, c=l.OO, CHC13) in 91% overall yield, whose spectral data were identical with those ([IX]D -34.5, 

c=O.30, CHC13) of the reported (lOS)-8. Thus the absolute structure of (+)-5 was determined to be 9S, 10s 

and that of mono acetate 6 was confirmed to be 9R, IOR. Conversion of (lOS)-methyl ester 9 was achieved by 

the standard procedure (three steps) in overall 83% yield. Formylation of (lOS)-9 with LDA and methyl 

formate in THF at -78°C to 0°C followed by treatment with CHZNZ-MeOH produced the optically active 

oudem~sin X (1) (23% overall yield, [a]~ -20 (c=l.O, EtOH)) after pu~~cation by HPLC. The spectral data 

(IR, NMR, and [a]~) of the synthetic (-)-1 was identical with those ([a]~ -20 (c=O.l6, EtOH)) of synthetic 

natural oudemansin X (1)2). 
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